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ABSTRACT

Approximate solutions of the equations of motion governing laminar
incompressible fluid flow through a cylindrical channel with a porous
wall are derived, The invalidity of an approximation in the solution
of these equations under certain circumstances 1s pointed out, and the
results of a numerical integration in the region where the approximation
is invalid are indicated. A description is given of an experiment

to verify the calculations, and some interesting results are noted.
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INTRODUCTION

The flow of fluids through chennels with porous walls has been of
interest in the last decade or so because of applications to transpira-
tion cooling, gaseous diffusion, and boundary-layer control. Several
invesfigators(l‘6) have contributed much to the theoretical study of
this type of flow, but little has been done experimentally.

In general, the theoretical studies have been limited to laminar,
incompressible flow., Most of the work has been done on the pfoblem of
a rectangular channel, and some interesting techniques have been developed
for the solution of this problem. However, in this case it is rather
difficult to check the solutions by a reasonably precise experiment.

We chose the more practical experimental problem of flow through
a finite porous cylindrical tube, accepting the theoretical difficulties

which are presented.




THEORY

Laminar, incompressible fluid flow through a channel with porous
walls is governed by the specialized Navier-Stokes equations, the equa=

tion of continuity, and appropriate boundary conditions.

0 (7+9)7 = 1(V-V)¥ + Vb = 0,

—_
v.v = 0.
p is the density of the fluid and n is its viscosity.
For a cylindrical channel with a uniformly porous wall the problem
reduces to a two-dimensional one described by the following equations:
au a'll) - (Bgu é_u_ -
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u = u(r,z) is the radial component of the velocity, and v = v(r,z) is
the axial, or z~-component of the velocity.
The boundary conditions arise from the following physical considera-

tions. Because of symmetry there should be no radial velocity on the




axis of the tube, i.e. u(o,z) = 0, The axial velocity profile must be

flat at the center of the tube, so %% = 0, At the wall of the

I
chammel ( r = a) the velocity should have only a radial component. Thus,
v(a,z) = 0. If the flow density is the same through all portions of the
porous wall, u(a,z) = u .

The analysis is simplified by the transformations R = r/a, Z = z/a,
P= P/puoz, V= - V/uo, U= - u/uo, and € = - n/puoa, which give the

following dimensionless equations:

el %U 13U _U 82U _
(BR ) (BR +Ra R2 a) aR =0
oV 82V 19V , 0°Vy , oP
(Vg * )‘( Ra—R*g'Z;)*a‘z’,-o,

d d

R =

Sﬁ( ) + SZ(RV)

The boundary conditions become V(1,Z) = O, u(1,z) = -1, U(0,2) = 0, and

oV
= = 0.
oR R =0

A consequence of the assumption that the flow density at the porous

wall is uniform is that the 7~component of the velocity may be written

as 7 times some function of R, with Z =0 defined by the point at which

" v(R,Z) = 0. By using this result and introducing a stream function ¥

) i
that identically satisfies the continuity equation, RV = ag, - RU = gi,

it is found that the expression for the pressure has the form



P = PO(R> + %7Z2, where y is a constant for a particular value of the
parameter €. PO(R) may be determined explicitly once the differential
equations have been integrated.

A particular stream function which satisfies the continuity equation
identically and, also fits the boundary conditions is T = BZf(Rz), where

B is a constant. The argument of the function f is chosen to be RZ

rather than R for convenience in analysis.

The substitution X = R2 gives ¥ = BZf(X), U = = —>—£(X), and

v X
V = 2BZf'(X), where the prime denotes differentiation with respect to
the argument of the function, which in this case is X. The velocity

profile is given by V(X).

With the above expressions for U and V the differential equations

become
2 2 __
2B o B2 L 4eB/X £t +2/X P =0, (1)
IE x3/2 °
and Bg(ffll - flg) + 2€B(fll + Xfll!) = % . (2)

If f is known explicitly, then PO is determined within a constant of

integration.

' 2 2
P = - B2‘/P£§_.dx + B~ é;.dX - 2¢Bf' + K.
o X 2 %2

Equation (2) may be re-formulated for attack in two limiting cases.

In the limit of large €

(F*' +X£'MY) - %(f'2 -fpt) = L—=a. (3)

o
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This may be regarded as the equation governing the flow of fluids with
high viscosities, or as the equation governing very slow flows, For
high flows or small viscosities the limit of small € gives

£12 - fF - %S(f" FXET) = - L= c, (&)

L4B®
Equations (3) and (4) are subject to the boundary conditions £'(1) = 0,

lim £(X d
(1) = %3 Xﬁ% £x) _ 0, and ;ig /X f£''(X) = 0,
/X

Equation (3) may be expanded around (1/e) = O to obtain a power
series solution in (1/e). Since y may be a function of €, d must also
be expanded around (1/€) = 0, For greater clarity the solution of
equation (3) will be denoted by g(X), while the solution of equation (&)

will remain F(X).

1 1
B=g, ¥g8 *t Bt e e v s
R €
ad=da +2 +%Za +....
(o] € 1 2 2

g, (1) =5 g (1)=0,nz1,
gn'(l) =0,nz0, 14m gn(X)
X0 =0, nz0,
ITX

1im ' _ >
w0 VX 8,'(X) =0, n20,

Equation (3) has been solved to order 1/e®, but the solution is

too unwieldy to present here. To order 1/e2

11




1(X4 X2  x2 X) 1 (X6 X5 X4

c36 "6 "L 79 "e_g'suoo"%é'é’L?é

Bg(X) = - (X2 LX) +

11%3  19x2 83X
=216 T 2710 T 2700) te .o,

881 1871
and7'=-l6€—12+1—5—5--é-—5—]3'€-5+. o o

In a like manner equation (4) may be expanded around € = 0.

Hy
I

Ff +ef +€3F + ...
0 1 2 ?

c=cy fec +€2 + ...

1 2

A similar set of boundary conditions holds.

To zero order in € equation (4) has the solutions

n
£, = B o {Em L 0,0, e L Recal st
X =R = r%/ag. These functions give a corresponding y = - (en + l)zwz.
The fact that there are an infinity of solutions may be tied in with the

boundary condition at the exit end of the tube. The only solution that

has been seen experimentally is that for which n = O,
The solution of equation (h) has been carried out to order one in

€F2) Tor the flows investigated the contribution of the first order

term is smell. At the lowest flow (largest ¢) which gives useful data

this term gives less than a l% correction, and its effect decreases with

decreasing €.

Tt should be pointed out that the zero order small € approximation

amounts to neglecting the highest order derivative, and this term may or

12




may not be important. Numerical integration of an analogous problem
shows that this procedure is valid when the wall is a source (uo < 0),
but that the highest order derivative dominates near the wall when there
is suction (uO > 0). In the limit of very high flows for wall suction
the solution is f = X/B. This solution does satisfy the boundary

conditions and gives a value of y of =k,

13



APPARATUS

Two separate sets of experiments were performed in an effort to check
the theoretical predictions, The first set yielded qualitative agreement
with the theory and information necessary for the design of the second,
more quantitative set of experiments, The porous system used in the
early experiments, shown in Fig., 1, consisted of an alundum tube which
was jacketed by a brass cylinder. Six'pressure'probes evenly spaced
along the length of the alundum tube at its inside wall were used to
measure the pressure drop down the channel, Differential measurements
of pressure agéinst the pressure at the top of the tube on its axis were
read on a water manometer system,

This system qualitatively verified the parabolic pressure profile
(p = %722), but quentitative verification (y = - 72) was not possible.
Also, attempts to measure the velocity profile proved futile because of
the small size of the channel. A larger porous tube that more nearly
satisfied the theoretical assumptions had to be found,

The main criteria in selecting a porous tube were that the material
must have uniform porosity and that it present a suitably large impedance

to the flow. Graphite, electroplated metal screen, pressed metal screen,

1h
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Fig. 1 - Schematic of Experimental Setup
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sintered metal powder, filter paper, and several forms of alundum
refractory were tested for these characteristics., Alundum was chosen
again for the final experiments because, of the readily available'mate—
rials, it most nearly satisfied the requirements, A thicker-walled tube
was selected so the impedance would be large enough.

The tube in the modified apparatus was 18 inches long and had a
l%-inch bore and a % inch wall, Pressure probes to measure Yy were
installed only at the top and bottom of the channel, Measurements of
the velocity profile were made by a palr of differential impact tubes
which faced into the gas stream. These are shown in Fig. 2. One of the
tubes was fixed on the channel axis and the other was adjustable radially.
The impact tubes were mounted in a holder to form a unit which was
movable along the length of the channel. Accurate knowledge of the
radial position of the movable probe was lost if the unit was moved
away from the bottom of the tube,

Tn both experiments the gas flow was up from the bottom of the

vertical unit, through the porous wall, and back to the bottom where it

was discharged to the atmosphere,.

16
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RESULTS

The limiting value of the parameter y and the magnitude and shape
of the velocity profile are the only things that have been successfully
checked experimentally, and.these were found only in the case of small
- e (large flows). Experimental error was too great to allow a determina-
tion of y as a function of €, and the sensitivity of the measurements
could not be made high enough to give meaningful results af low flows.

The theory shows that when the wall is a source (uo < 0) 7 should

have a limiting value of - Wg, and the velocity profile should be given
by
' _ i
V = 2BZf'(X) = 7Z cos {EX} .
The axial velocity as a function of the position variables is then
- " T_T_[E]Z
V== Ty 0875l ‘

v and v must now be expressed in terms of measurable qguantities,

Note that y = EAP/ZZ, where AP = Ap/pu02 and Z = z/a. Therefore

_ 2a5Ap

22" 0
u 2z
P4,

¥ may be expressed in terms of the total measured flow,

Q, in gm/sec, through a conservation of mass relationship. If L is the

18




length of the porous tube, the mass of fluid into the wall each second
between z = O and arbitrary z is Qz/L. The quantity out of fhe wall
every second is JA, where J is the flow density, -pu,, and A is the
cylindrical area of the wall section considered. Thus

Qz/L = JA = -pu 2maz,

2 _ Q2
© hﬂ2a2L2p

and pu

This gives the expression 7y = 8m2a4L2pAp/Q22z2. In the experiment Ap is

the pressure difference between the points z = L and z = 0. Therefore

y = 8r2atRR . (5)

Ap, and hence y, can be shown to be a negative number by considering
Bernoulli's Law along a streamline.

The differential impact tubes measure the difference

_ - — 1 2 2
&Py, =P, Py ép("’o vr,) ?

where VO and vr are the fluid velocities in the axial direction on the

axis and at an arbitrary radial position, respectively. Since it is incon-

venilent to measure v, for each flow, and since the velocity at the wall,

vw, is small, v_ is eliminated in favor of v .
o] w

AP =P -P =23(2-v2).
(o] W (@] w

W
Thus, v =Jr§ JAP = AP -P . In the experiment P was found to be
r P W r W W

negligibly small, so the velocity profile is expressible in terms of two

differential pressure measurements:

19



vr=j_§JKP;TT§P:. | (6)
The subscript on the AP's indicates the position of the movable ilmpact
tube,
Comparison of theory and experiment for the velocity profile is
facilitated if the shape and amplitude of the profile are given sep-
arately. For the shape, equation (6) is normalized so the data may be

: 2
I‘ .
directly compared with cos {g{g] }- . The theoretical amplitude is

=
£

v = = 2 = P) (7)

and the experimental amplitude is given by the normalizing factor

v =Fr§—.
o] o] W
e
When the wall is a sink (uo > 0) the boundary-layer type of flow
that results has a flat velocity profile (except near the wall). y may

be calculated knowing that Ap/p?z = = % for this type of profile. Using

a mass balance equation for the axial direction, Qz/L = JA = pvaZ,

AN TPa*130 Ap_ _ X _ _ 1,

p;}.Z Q222

N

Tt is seen that y = -L for u > 0,
A1l quantities in equations (5), (6), and (7) are in cgs units.

However, since it is more convenient to measure Ap and the AP's in units

€S cm2

must be introduced.
of water

d
of mm of water, a correction factor of 98 oo

This, along with the 19% mm radius of the porous tube, gives the results

20




y = 1,063 x 105pA—1:- , (5a)
AP - AP 9 (6&)

_0.1349 Z
Vot———B—Qf . (Ya)

When the wall is a source p is the density of the gas used (nitrogen)

at room temperature and Los Alamos atmospheric pressure. This density

-3 3
is 0,970 x 10  gm/cm®. Thus

y=103 2, | (50)
Q2
v, = W9.5[AF AP, (6v)
Z
v, =139Qg¢ . (1)

The Ap and the AP's are in mm of water.

Only y may be checked quantitatively when the wall is a sink, and
in this case an additional measurement to find the density of the gas
must be made. In terms of the absolute operating pressure inside the

porous tube, I, psi,

y = 9.051 22 | (5¢)
Q,2

The experimental values of 7y were close to the theoretically
predicted values for both flow directions. It was found that when the
well is a sink, y = =3.88 + 0,08 (-4.,00 was predicted from the theory),

and vhen the wall is a source, y = =9.88 + 0.11 (-9.87 was predicted).



These results are the averages of 15 and 1k determinations respectively,
with standard deviations, over a range of flows from 5.84 to L7.7 gm/sec
of nitrogen. The experiments were done at a pressure of 11,6 psia

and a temperature of about 25°C.

The amplitude of the velocity profile for Uy > 0 could not be
found experimentally, but the flat character of this profile was verified
within the sensitivity of our pressure measuring system (a water manom-
eter).

The velocity profile data for u, < 0 are presented in Table 1, with
a "typical" set superimposed on the theoretical profile in Fig. 3.
Experimental precision on the steep slope portion of the curve was not
as high as on the flatter portions because small errors in knowledge of
the position of the movable probe change the value of the cosine con-
siderably. This introduced considerable experimental error when the
probes were moved away from the bottom of the tube (z/L =1).

In Table 1 the velocities given are in meters/sec. The discrepancies
between the theoretical and experimental velocities may be_explained at
least in part by the finite size of the impact tubes used to measure the
velocity profiles. Thus it was not APW that could be measured, but some
AP, at a point not on the wall, which was too low.

Considerable effort was expended in trying to force one of the
"higher-order” modes of flow to appear, for which n > O, but these
experiments failed. The velocity profile for the n = 1'mode is shown

in Fig. 4. The general method of attack on this problem was to try to

22
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control the exit boundary cqnditions so they would be favorable for the
establishment of the desired flow scheme. The shape of the stream
function was calculated and a plug which fit this function was machined
and inserted into the gas stream. Since the experiments failed it has
not been determined whether or not these "higher-order' solutions have
physical significance.

It is interesting to note that the equations of motion that are
solved are those that govern laminar, incompressible fluid flow, while
the experiments were performed at exit Reynolds numbers high enough (up
to about 100,000) that turbulence should have been well established,
and with nitrogen, a compressible gas, as a working fluid. This indicates
that the transition from laminar to turbulent flow either takes place
only at even higher ngnolds numbers, or has little effect on the veloclty
profile.

Compressibility effects were quite small under the conditions used

in our experiments. The maximum Mach numbers attained were 0.16.
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